Part Number Hot Search : 
2SC46 40270 SSP7N60A TLC116N 10TQC C1002 225M0 45000
Product Description
Full Text Search
 

To Download IRF1310NS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF1310NS/l l advanced process technology l surface mount (IRF1310NS) l low-profile through-hole (irf1310nl) l 175c operating temperature l fast switching l fully avalanche rated absolute maximum ratings the d 2 pak is a surface mount power package capable of accommodating die sizes up to hex-4. it provides the highest power capability and the lowest possible on- resistance in any existing surface mount package. the d 2 pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0w in a typical surface mount application. the through-hole version (irf1310nl) is available for low- profile applications. description v dss =100v r ds(on) = 0.036 w i d = 42a parameter typ. max. units r q jc junction-to-case CCC 0.95 r q ja junction-to-ambient ( pcb mounted,steady-state)** CCC 40 thermal resistance c/w parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v ? 42 i d @ t c = 100c continuous drain current, v gs @ 10v ? 30 a i dm pulsed drain current ?? 140 p d @t a = 25c power dissipation 3.8 w p d @t c = 25c power dissipation 160 w linear derating factor 1.1 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ?? 420 mj i ar avalanche current ? 22 a e ar repetitive avalanche energy ? 16 mj dv/dt peak diode recovery dv/dt ?? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c s d g to-262 to-263 2014-8-30 1 www.kersemi.com
IRF1310NS/l electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.11 CCC v/c reference to 25c, i d = 1ma ? r ds(on) static drain-to-source on-resistance CCC CCC 0.036 w v gs = 10v, i d = 22a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 14 CCC CCC s v ds = 25v, i d = 22a ? CCC CCC 25 a v ds = 100v, v gs = 0v CCC CCC 250 v ds = 80v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 110 i d = 22a q gs gate-to-source charge CCC CCC 15 nc v ds = 80v q gd gate-to-drain ("miller") charge CCC CCC 58 v gs = 10v, see fig. 6 and 13 ?? t d(on) turn-on delay time CCC 11 CCC v dd = 50v t r rise time CCC 56 CCC i d = 22a t d(off) turn-off delay time CCC 45 CCC r g = 3.6 w t f fall time CCC 40 CCC r d = 2.9 w, see fig. 10 ?? between lead, CCC CCC and center of die contact c iss input capacitance CCC 1900 CCC v gs = 0v c oss output capacitance CCC 450 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 230 CCC ? = 1.0mhz, see fig. 5 ? i gss ns i dss drain-to-source leakage current nh 7.5 l s internal source inductance ? starting t j = 25c, l = 1.7mh r g = 25 w , i as = 22a. (see figure 12) ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) notes: ? i sd 22a, di/dt 180a/s, v dd v (br)dss , t j 175c ? pulse width 300s; duty cycle 2%. ? uses irf1310n data and test conditions ** when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended soldering techniques refer to application note #an-994. parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ?? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s =22a, v gs = 0v ? t rr reverse recovery time CCC 180 270 ns t j = 25c, i f = 22a q rr reverse recovery charge CCC 1.2 1.8 c di/dt = 100a/s ?? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics s d g 42 140 a 2014-8-30 2 www.kersemi.com
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20us pulse width t = 25 c j o top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 0.1 1 10 100 20us pulse width t = 175 c j o top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v , gate-to-source volta g e (v) i , drain-to-source current (a) gs d t = 25 c j o t = 175 c j o -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) o v = i = gs d 10v 36a fig 4. normalized on-resistance vs. temperature v ds = 50v 20 s pulse width IRF1310NS/l 2014-8-30 3 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 500 1000 1500 2000 2500 3000 3500 v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss g s g d , ds rss g d oss ds g d c iss c oss c rss 0 20 40 60 80 100 120 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 22a v = 20v ds v = 50v ds v = 80v ds 0.1 1 10 100 1000 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs 1 10 100 1000 1 10 100 1000 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c o o v , drain-to-source volta g e (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms IRF1310NS/l 2014-8-30 4 www.kersemi.com
fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 t , case temperature ( c) i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) IRF1310NS/l 2014-8-30 5 www.kersemi.com
q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 200 400 600 800 1000 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as o i d top bottom 9.0a 16a 22a IRF1310NS/l 2014-8-30 6 www.kersemi.com
p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - * v gs = 5v for logic level devices ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * IRF1310NS/l 2014-8-30 7 www.kersemi.com
d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x part number logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a IRF1310NS/l 2014-8-30 8 www.kersemi.com
package outline to-262 outline to-262 part marking information IRF1310NS/l 2014-8-30 9 www.kersemi.com
tape & reel information d 2 pak 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.42 9) 10.70 (.42 1) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.06 3) 1.50 (.05 9) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min . 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. 2014-8-30 10 www.kersemi.com IRF1310NS/l


▲Up To Search▲   

 
Price & Availability of IRF1310NS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X